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Photoisomerization of encapsulated Z-enecarbamates within

the hydrophobic chiral cavities of c-CD showed higher

diastereoselectivities in the photoproducts than those obtained

in solution. The selective encapsulation of the enecarbamates

and the following isomerization process are both diastereo-

selectively controlled by c-CD.

Understanding the intricacies involved in photoisomerization

within confined cavities has provided insights into the excited

state processes that occur in biological systems.1 Supramolecular

assemblies such as micelles, zeolites and cyclodextrins have been

shown to be very effective in controlling the excited state processes

during phototransformation.2 Immense progress has been made in

recent decades to achieve high stereoselection in photoreactions in

which the chiral information in the photoproducts is imprinted

within the intervening short-lived excited species/reactive inter-

mediate.3–6 Recently we have shown that oxazolidinone-function-

alized enecarbamates are versatile systems for the study of

conformational, electronic, stereoelectric, and steric effects.7–11

Enantioselectivity as high as 97% was observed with these systems

during photooxygenation. Further, it was clearly demonstrated

that the alkene geometry is crucial to control the approach of the

singlet oxygen. We have now carried out a systematic study on

how to control the photoisomerization process that will provide

insights into how the alkene geometry may be fine-tuned in

isotropic media.12 Herein, we report the influence of cyclodextrin

nano cavities13 on the diastereroselectivity of the photoisomeriza-

tion process.

Diastereoselective photoisomerization of oxazolidinone-

functionalized enecarbamates 1 (Scheme 1) in solution gave low

diastereoselectivities (5–15%) upon direct and sensitized irradia-

tion.12 Even chiral sensitizers did not significantly alter the

observed selectivity in these systems.12 In this context, we investi-

gated cyclodextrin nanocavities13,14 as host to bias stereoselection

during the photoisomerization processes. 4-Isopropyloxazolidi-

none functionalized 19Z-4R(iPr),39R/S-enecarbamates (1Z) com-

plexed readily with c-cyclodextrin (c-CD). The c-CD/1Z complex

was formed by adding 1Z (0.03 mmol) in 12.5 mL CD3OD to

12.5 mL D2O solution of c-CD (0.03 mmol).15 FTIR analysis of

the c-CD/1Z complex in a 1 : 1 v/v of D2O/CD3OD mixture

showed the n(CO) band of the oxazolidinone ring at 1699 cm21

compared to that of the uncomplexed 1Z in CD3OD at 1732 cm21

(Fig. 1). The observed shift [Dn(CO) = 233 cm21] strongly

suggests that a host–guest complex is formed between 1Z in the

hydrophobic chiral cavity of the cyclodextrin; the carbonyl moiety

of oxazolidinone ring is stabilized through a hydrogen bond with a

proton provided by the hydrophobic inner cavity of c-CD.16 1H-

NMR analysis is consistent with the FTIR results, in which an
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Scheme 1 Photoisomerization of 4-isopropyloxazolidinone functiona-

lized 19Z-4R(iPr),39R/S-enecarbamates 1Z.

Fig. 1 FT-IR spectra of 1Z in CD3OD (left) and the complex of 1Z with

c-CD (right) in 1 : 1 v/v of D2O/CD3OD.
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upfield shift in the vinylic hydrogen of the enecarbamate was

observed.15

Steady-state emission spectra of the c-CD/1Z complex were

recorded in 1 : 1 v/v of D2O/CD3OD at 77 K, and were compared

to the steady-state emission spectra of 1Z in an ethanol glass under

identical conditions (Fig. 2). The phosphorescence emission of the

c-CD/1Z complex was broadened and slightly redshifted, which

indicates that there are different orientations of the guest within the

c-CD cavity of the host. Time-resolved phosphorescence measure-

ments15 were performed at 77 K by multichannel scaling using

light pulses at 260 nm for excitation and monitoring the emission

at 390 nm. The c-CD/1Z host–guest complex showed a

phosphorescence lifetime of y27 ms compared to 6.6 ms in

ethanol glass. It is clear that the increase in the lifetime was caused

by encapsulation of 1Z within the hydrophobic cavity of c-CD. A

similar increase in lifetime upon complexation by c-CD has

previously been reported.17

Photoisomerization of the c-CD/1Z complex in 1 : 1 v/v of

D2O : CD3OD ([c-CD] = [1Z] = 1.4 mM) was carried out for

different time intervals and the observed diasteremeric ratio (dr) in

the product E-enecarbamates and the starting Z-isomer was

determined both by 1H-NMR spectroscopy and by gas chromato-

graphy (Table 1).15 All the photoirradiations were performed on a

50 : 50 mixture of the 39R and 39S epimers for both Z- and

E-enecarbamate, unless noted otherwise. The diastereomeric ratio

(dr) were enhanced by encapsulation within the hydrophobic

cavity, compared to the direct irradiation of 1Z without c-CD in

MeOH; the latter showed practically no diastereoselectivity.12 As

can be seen from Table 1, high dr were observed for short

irradiation (0.5 min) and a decrease upon prolonged irradiation;

the dr (favoring the C-39S epimer) of 1E decreased from 29 : 71 at

0.5 min to 49 : 51 at 5 min, that is probably due to the fast

isomerization of the Z- to E-isomer.18–20

To gain more details on the origin of the selectivity observed

within c-CD, the photoisomerization was investigated in the solid

state. The complexation of c-CD with 1Z was achieved by adding

1Z (1.5 6 1025 mol) in 5 mL ether and c-CD (1.5 6 1024 mol) in

10 mL deionized water. A white precipitate of c-CD/1Z complex

formed immediately. For easy handling of the sample, excess

amount of c-CD was used during complexation; the ratio of

host : guest prepared were 10 : 1 and 20 : 1, respectively. The solid

complexes were collected by filtration and washed thoroughly with

ether, and the residue was dried in vacuum overnight. Diffuse

reflectance Fourier transform IR spectroscopy (DRIFTS) was

performed on these samples in a KBr matrix. The carbonyl stretch

of the oxazolidinone moiety was observed at 1727 cm21 for both

10 : 1 and 20 : 1 ratio of the c-CD/1Z complexes, compared to

1753 cm21 for the uncomplexed 1Z (in KBr matrix). The shift

[Dn(CO) = 226 cm21] of the complex in the solid state was similar

to that observed in a D2O/MeOD solution, which indicates the

formation of similar host–guest complexes in both cases.

After the extraction of the Z-enecarbamates from the solid

complex by dissolving the samples in CD3CN, 1H-NMR analysis

was carried out to determine the preferential diastereoselectivity of

the complexation of 1Z by c-CD. Preferential complexation of the

19Z,4R(iPr),39S-isomer was observed within the hydrophobic

chiral cavity compared to 19Z,4R(iPr),39R-isomer. It should be

noted, therefore, that the starting c-CD/1Z complex is preferred

for the C-39S epimer, with the dr of (39R : 39S) 42 : 58 and 45 : 55

for the 20 : 1 and 10 : 1 complexes, respectively (Table 2). The

solid complexes were then sandwiched between two quartz glass

plates and irradiated at ambient temperature. Efficient photo-

isomerization was observed and the E-39S epimer was enhanced to

a dr value of 29 : 71 in the solid state (Table 2). The observed

selectivity upon photoisomerization in the solid phase indicates the

difference in the rate of the photoisomerization of the Z-39R and

Z-39S epimeric enecarbamates, compared to that in CD3OD

solution, for which they have similar photoisomerization rates as

Fig. 2 Steady state emission spectra at 77 K (lex: 260 nm) of 1Z

(5.7 6 1025 M) in ethanol and c-CD/1Z ([1Z] = [c-CD] = 4.8 6 1025 M)

in 1 : 1 v/v D2O/CD3OD.

Table 1 Photoisomerization of 1Z with c-CD in a D2O/CD3OD
solution

Iradiation/mina Z : E
dr (1Z)b dr (1E)c

39R : 39S 39R : 39S

0.5 79 : 21 57 : 43 29 : 71
1 67 : 33 56 : 44 39 : 61
2 51 : 49 53 : 47 42 : 58
3 51 : 49 54 : 46 46 : 54
5 52 : 48 52 : 48 49 : 51
a [1Z] = [c-CD] = 1.4 mM. Photoirradiation was performed at
ambient temperature in a 1 : 1 v/v of D2O/CD3OD with an excimer
laser at 308 nm; 20 Hz, 100 mJ pulse21 (2W). The diastereomeric
mixture (50 : 50) of the starting material was used. b Diastereomeric
ratio (dr) of the starting Z-isomer after photoreaction. Mass balance
.95%. c Diastereomeric ratio (dr) of the product.

Table 2 Photoisomerization of the c-CD/1Z complex in the solid
statea

Entry
Mixture ratio
(c-CD:1Z)

Irradiation/
min Z : E

dr (1Z)b

39R : 39S
dr (1E)b

39R : 39S

1 20 : 1 0 100 : 0 42 : 58 —
2 15 67 : 33 41 : 59 30 : 70
3 30 60 : 40 40 : 60 32 : 68
4 10 : 1 0 100 : 0 45 : 55 —
5 15 78 : 22 43 : 57 32 : 68
6 30 66 : 34 43 : 57 35 : 65
a Irradiation was performed at 254 nm at ambient temperature in a
Rayonet reactor. The diastereomeric mixture (50 : 50) of the starting
material was used. b Diastereomeric ratio (dr) of the starting
Z-isomer after photoreaction and the product E-isomer. Mass
balance .95%; dr was determined by 1H-NMR spectroscopy in
CD3CN as solvent.
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shown by their low dr (Scheme 2-top). The photoisomerization

process of Z-39S to E-39S epimer is clearly enhanced (Scheme 2-

bottom) by the complexation compared to that of the Z-39R to the

E-39R, which may be attributed to the less hindered structure of

the E-39S epimer than the E-39R epimer in the confined cavity of

c-CD.

Our current study of diastereoselective photoisomerization of

oxazolidinone-functionalized enecarbamates 1Z within the nano

cavities of c-CD shows that the rate of photoisomerization of the

19Z4R(iPr),39R and 19Z4R(iPr),39S epimers may be altered by

supramolecular assemblies like cyclodextrin. The 19Z4R(iPr),39S

epimer photoisomerizes faster than the corresponding C-39R

epimer upon complexation, which presumably reflects the

conformational effects in the two complexed epimers with c-CD.

This rate difference manifests itself in the observed difference in the

isomerization rates that is reflected in the diastereoselectivity of the

product E-isomer. Our current results, coupled with our photo-

oxygenation studies,7–11 demonstrate that not only the bimolecular

singlet-oxygen reaction be controlled, but also the unimolecular

photoisomerization process, especially by utilizing chiral confined

media such as c-CD. Evidently, the C-39 position in the

enecarbamates is critical in dictating the photoreaction within

confined nano cavities.7–11
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